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Bose condensation for the Wu-Austin Hamiltonian without pumping
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The eigenstates of the Wu-Austin Hamiltonian without coupling to the pumping system are con-
sidered. We are able to show that for a high quantum number N the energy of the system is proportional
to —N2. This has dramatic effects for the entire system at any temperature. We have Bose condensation
even without pumping. The rate equations defined by Frohlich do not describe this behavior.

PACS number(s): 87.10.+e, 87.15.—v, 87.22.—q, 87.50.Jk

I. INTRODUCTION

Frohlich [1-8] developed a theory of long-range coher-
ence of longitudinal-polarization modes to explain certain
anomalous dielectric properties in biological cells. Bio-
logical tissues are considered to be open systems with
possible stationary states far from equilibrium. Frohlich
considered a model consisting of three parts: (a) A sys-
tem of oscillators (Bose particles) coupled linearly and
nonlinearly to (b) the so-called heat bath. It consists of
oscillators and has a certain temperature 7. (c) A third
system which can pump quanta into system a incoherent-
ly. Its effect is described by a so-called pumping rate.
His model therefore describes an open system. Because
of the pumping, there must be an energy flux from system
a into the heat bath.

Frohlich postulated the following rate equation to de-
scribe this model:

h; =S; —®;[n; exp(#iw; /kT)—(1+n;)]
— 3 x;;[n;(1+n;)exp(fiw; /kT)
j

—n;(1+n;)exp(fiw; /kT)] . (1.1)

Solving this rate equation, Frohlich could show the fol-
lowing for the stationary state:

(a) If the pumping rate S =3 ; S; is zero, which corre-
sponds to the situation where there is no coupling to the
third system, the whole system will be in thermal equilib-
rium. Then the oscillators of system a show the well-
known thermal distributions of free Bose particles:

T—__ 1
-1
(b) If the pumping rate S exceeds a certain value, the
oscillators of system a should show the so-called Bose
condensation. Almost all quanta are found in the oscilla-
tor of the lowest frequency w:

n;~d;4 .

Frohlich explains that then in this new phase coherent os-
cillations of this oscillator could appear.

Wu and Austin [9,10] presented a Hamiltonian from
which they derived a rate equation of the form (1.1).

4

Mills [11] derived an extended form of the rate equation
using a more general Hamiltonian. Tuszynski, Paul,
Chatterjee, and Sreenivasan [12] used the Wu-Austin
Hamiltonian to show a formal equivalence to the so-
called Davydov Hamiltonian, which was invented by
Davydov [13] to explain energy transport in proteins.
Recently there was disagreement between Mills [14] on
one side and Tuszynski and Paul [15] on the other re-
garding the question of whether it really is possible to
compare Frohlich’s theory, which describes an open sys-
tem, with Davydov’s theory, which describes a closed
system and contains no pumping.

In this paper we raise the question of whether the Wu-
Austin Hamiltonian can really describe Frohlich’s sys-
tem. Wu and Austin used perturbation theory to derive
the rate equations, but in our opinion perturbation theory
should be used carefully if applied to a nonlinear system.
Our method used here is independent of perturbation
theory. We want to investigate the thermodynamics of
the Wu-Austin system, which means that we consider the
system without pumping. Our results can then be com-
pared with the corresponding solution of the rate equa-
tion. We get totally different results in both cases. We
will show that even without pumping, the Wu-Austin sys-
tem shows Bose condensation and has an energy gap.

The Wu-Austin Hamiltonian [9,10] is defined by

H=H,+H,+H,+H,+H,,+H, (1.2)
with
< t
H,= 3 fwa;a; , (1.3)
i=1
H,= 3 #Q,b/b, , (1.4)
k
H,= 3 #0;p]p; , (1.5)
J
-« t
H,=#3 3 (Abja;+A*ba)) , (1.6)
i=1 k
M
Hop=1% 3 3 (xaja,bf+x*ala;b,) , (1.7)
ij=1 k
< t
H,=#%3 3 (ép;a] +E&*pla;) . (1.8)
i=1 j
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Different temperatures of the subsystems should be neces-
sary for the Bose condensation described by Frohlich.
Thus the heat bath H, should be at the temperature T,
and the pumping system H), at the temperature 7, with
T,>T,. We would then have an energy flux from p to b
through a. The correct rate equations should then de-
scribe the time dependence of the quantity n,-=(a,-lrai)
with a stationary (asymptotic) solution n?. In this paper
we consider the special case of thermal equilibrium
(T'=T,=T,); we will determine the distribution nT for
this special case and compare it with n°. We will simpli-
fy our calculation by neglecting the interaction with the
pumping system p. Thus we set £=0 in this paper.

In the following we assume that the number of the os-
cillators a; should be finite (M < ). On the other hand,
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for low frequencies and a cutoff for a high frequencies,

Qk<00 . (1.10)

II. AN EXACT TREATMENT

Before we consider the general case, we use a simplified
system in the following: (i) We set A=0, which means we
neglect H,,. (ii) We neglect the i dependence of w;, so we
can write w; =w. The simplified Hamiltonian (1.2) then
reads

M
H=Y #oaja;+ 3 #Qb)b,
i=1 k

M
+1% 3 3 (xajabf+x*ala;by) .

the number of heat-bath modes must be infinite. Indeed, el 2.1)
r . Lj=1 k
a realistic heat bath must have a continuous frequency )
spectrum. Therefore, in this paper a sum over k should  Introducing new operators 4, defined by
be read as an integral over k (3, -+ = [d% ---). A M
usual assumption [16] for the frequency distribution is 4= 3 0y, 1=01,...,M—1, 2.2)
i=1
Q,—constXk as k—0 (1.9) with
J
1 1 1 1
vM VM vM VM
172
M- 1 1 1
oT= M V(M —1)M V(M —1)M V(IM—1)M
M—-2 i 1 1
0 — |5 , (2.3)
,M——l ] VIM—=2)M—1) V(M-—2)M-—1)
0 0 V1 V3
[
we get the following form: with system b.
The ei V),
H=H,+H,+H,, , e eigenstates |¥)
H\V)=E|V) , (2.5)
M—1
H, =3 fiw A A, , of (2.4) can be calculated exactly. Let us first try the
" =0 form
+ (2.4)
Hy,= 3 Ay byby ,
< M1y
lw(N)= 3 (4,))"'10)IB) . (2.6)
Hy, =1#AMAJA, S (xb{ +x*by) . =
k
Only the collective oscillator ( 4 ;AO) feels the interaction Using the eigenvalue equation (2.5) we get
J
M—1
HW(N) = |fiw 3 N+ 3 #Q:blb, +1aMN, S (xb{ +x'by) || ¥(N))
n=0 k k
M—1 :
= |fiw 3 N+ 3 AQ [(by —Bi)(by — B ) —BiBi 1 || W(N)) 2.7)
n=0 k
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with
_ MNyx
k20,

This gives an eigenvalue equation for |3):

> Q0 [(b{ —BE) b —B)—BiB 1 |IBY=E,IB) .
k

(2.9)

If we are interested in the lowest state |¥(N)) (for fixed
N), |B) must be the so-called quasiclassical state:

bi|B) =B IB) . (2.10)
The eigenvalue E (N) is
M—1
E(N)=S #woN,—#ANIM?*x|? L 2.11)
=0 v 4y

The total system of eigenstates |W(N,n)) of H is given by
a generalization of (2.6):

M—1

WV, )= I (4D™0) [T B)™ 1B,  (.12)
1=0 k
with
B,|B)=0, B,=b,—B; . (2.13)
The state (2.12) has the energy E (N,n):
M—1
E(N,n)= 3 #oN;+ 3 #Q;n, —#N3K ,
=0 1 § (2.14)
K =M?|x|? .
M?|x| % 20,

The same result can be obtained in a more elegant way if
we use a unitary transformation for the Hamiltonian (2.4)

H=vaut, (2.15)
U=exp |[MAJ4,S ﬁ(xbg—x*bm
k k
Since
Ub, Ut =b, —é"TXAgAO ,
¢ (2.16)

vAla,ut=4}4,,

we obtain a very simple form for the transformed Hamil-
tonian:

M—1
H='3 #od] A+ 3 #Q,blb,—#K(A{4,? . (217
=0 k
The use of the transformations (2.13) or (2.16) can cause
difficulties if
[ dk|By 2= oo

because the two Hilbert spaces would then be unitarily
inequivalent to each other [17]. But from (1.9) and (1.10)
it follows that this integral exists in our case. We there-

(2.18)
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fore get the astonishing result that the system can lower
its energy without any limitation by increasing N,. In
Sec. IV we will see how dramatic the consequences are.

III. THE GENERAL CASE

Since the general case H=H,+H,+H, +H,, can-
not be calculated exactly, we use the following product
ansatz:

W) =lp, e, .

Using the well-known variational principle to optimize
(3.1), we get

(3.1

Hlo, ) =E,l@,), Hi"ley)=E,lpy) , (3.2)
with
H'=S #o,a}a;+#S (A b} Ya, +A*{b; a])
i ik
(3.3)

+1% 3 ala; 3 (b)) +x* (b))
ij k

and

HiT=3 #Qblb, +# 3 (Ab[(a;) +A%b,(a]))
i ik

+3AS <aifaj ) % (xbi +x*by) . (3.4
iLj
H{T can be diagonalized into
Hi"=#3 0 (b{~BDb—BO—BiB ], G
with
Bk=<bk>=—b'7 x§<a,.>+%xi2j<afaj> Y

H:T can be transformed to
HI=13 (08, —a)(a] —af)a;,—a;)—afa;], (.7
ij

with
A* 3By
k

1
@=la) = ———,
aZ oot

a=—%§ (xXBE +x*By) -

(3.8)

In order to diagonalize (3.7) we need to solve the eigen-
value equation

S8, —a!=hre/ . (3.9)
J
For the normalized eigenvectors e/ we get
172
—_ 4 —1— 1
ef= , A7I= —_— (3.10)
e 2 (@;—A;)?

The eigenvalues are determined by the following equa-
tion:
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1_ 1 3.11) The state |¥)=|g,)|p,) is only dependent on the two
a ? w;—A; ' quantum numbers
Using the I;fw operators A4, N =( Alj— 4,)
= [ — — —
A= 2 ela—ay), 1201, M=1, ne={(bf — B )by —B,)) =(blb, ) —BLBi . (3.18)
3.12
Mo, 4 ( ) The remaining quantities By, «;, A;, and a have to be
4= 20 ed;ta;, determined by (3.6) together with (3.8), (3.10), and (3.11).
B The next step is the evaluation of (H ). From (3.3),
we arrive at the simple form (3.13), and (3.16)—(3.18) we derive
M—1 - = F
HS=#S MA A,—%3 (08, —a)ata; . (3.13) (H)=EWN,m)=CH) +# 3, 0, (b )
=0 ij

Equation (3.11) cannot be solved exactly. We will show
later that we always have a > 0. For this case, we present
the graphical solution in Fig. 1. We see that the eigenval-
ues A; for i70 fulfill the following conditions:

w; <A <w; 4, i70, (3.14)

and are therefore bounded. On the other hand, A, is sen-
sitive to the value of a. We will see later that
No=(A}4,)—  implies that a— . For this limiting
case we have

Ao— —aM, ei0—>—‘71;]"?—, Aoavlﬁz(ai—a,—).
i

(3.15)
From (3.13) it follows that |@, ) can be written as
M=t Ly
loa 2= I (4/)'0), (3.16)
=0
whereas |, ) has the form
Iy ) =TT (b —B:)™*10) . 3.17)
2
fy (A, f, (N
; A N
o U1 [0 [W3)uy, (g g (W WglWglWig

FIG. 1. For the graphical solution of (3.11), we plot the two
functions f;(A)=const=1/a and f,(A)= 3;[1/(w;—A)] as an
exemplary illustration. The marked points of intersection
f1(A)=/f,(X) are the solutions A; of (3.11).

M—1
=# 3 MN,—#%3 (0;8;—a)afa;
=0 ij

k

The calculation of A;, a;, and B; in general cannot be
carried out exactly. However, we can calculate (H) in

the limiting case Ny— c to show that the form of
E (N, n) is again similar to (2.14):

E(N,n)~—N}+O0(N,) . (3.20)

What we have to do is to solve the following set of equa-
tions:

1 ,
Bi=—g [FSatix 3 (ale) 6.6)
L]

1]

A* 2 Br
— k

a;=—

:01— 1 , (3.8"
IS BB ot
k i i

1

a=—33 XBL+Xx*Bx) ,
k
Eqgs. (3.10) and (3.11). To solve the first equation we need

12! (ala;)= 2< [21‘, elA]+at ]

iJj

X [2 eiIIA1/+a11 ]>
I

> eiI

i

=2 (3.21)
l

N, + {;ai (2 .

This quantity is positive and goes to + o for Ny— 0.
For this case it follows from (3.6') and (3.8’) that 8, and a
are going to infinity, whereas a; remains finite. There-
fore, the conditions to obtain (3.15) are fulfilled. Thus for
Ny,— « the important quantities have the following
structure:



1
610:W+0(1/N0) 5
a=1L1y’NoM 3, L o ,
PR
1 (3.22)
=—— +0(1
B 20, XNoM +0(1),
}\’*
o, =— +O0(1/Ny)
a),-)(*z l/a),
1
In leading terms of N, we therefore have
(HY=—1#iy|’N3M? S —Ql—+0(1vo> : (3.23)
k %k

which is exactly the same dependence as in (2.14). As in
Sec. II we see that the Wu-Austin system has the
ground-state energy — oo.

IV. THE SYSTEM IN CONTACT WITH A HEAT BATH

Due to the interaction with the heat bath, the occupa-
tion numbers N, and n; will be found according to the
temperature T of the heat bath. Let us first calculate the
partition function Z for the system described in Sec. II:

M—1
z=|1I z [sz]zo, @.1)
I=1 k
with
Z,= 3 exp(—pfioN,), [=1,..., M—1,
N;=0
Z,= 3 exp(—BAaQ;n) ,
n, =0
" (4.2)
Zy= 3 exp] —BA(N,0—N3K)],
No=0
1
B= .
kgT

Z, and Z,, are the well-known partition functions for har-
monic oscillators:
1
=,
I 1—exp(—Bho)
1
Z,= .
K 1—exp(—BHQ,)

4.3)

Z, is infinite. In order to see this in detail we define

NO
Zon, = NE_OeXP[—Bﬁ(NOw—NgK)] . 4.4)

For N,— « we have

_ —BiwN,—KN})
ZO’NO =e

X[1+4e PNy (2PN Ly 4.5)
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We see that only the last term in (4.4) is important. Since
we have to take the limit No— o0, (N, ) is infinite, too,
independent of the temperature. The A4, oscillator shows
Bose condensation for all temperatures. The reason for
this is an infinite energy gap A,

A=2%KN,= L |y|?’N,M* 3, Qi—wo , (4.6)

Kk ik

departing the ground state (N,= oo ) from the first excit-
ed state.

It is immediately clear that (4.6) holds also in the gen-
eral case of Sec. III. The nonlinear part H,, of the
Hamiltonian dominates the behavior of the system for
Ny— 0, as we can see from (3.23).

V. DISCUSSION

In this paper we calculate the energy of the Wu-Austin
Hamiltonian without pumping. The simplified system
(A=0, w;=w) can be computed exactly (Sec. II). The
system in general is calculated using the product ansatz
(3.1), which turns out to be exact in the simplified model,
and considering only the important limiting case of high
quantum numbers (Sec. III). We do not use any pertur-
bation theoretical methods. In both cases we obtain the
result that the energy of the ground state is proportional
to —N3. This negative excitation energy has the conse-
quence that the system can lower its energy by just in-
creasing the number of quanta N,. In Sec. IV we show
that the system therefore has an infinite energy gap,
which means it always remains in the ground state in-
dependent of the temperature.

Thus the Wu-Austin system shows Bose condensation
at all temperatures even without pumping. This
phenomenon can be described as follows: almost all
quanta are found in one mode. But this mode is a collec-
tive mode and not just the mode with the lowest frequen-
cy, as can be seen from Egs. (2.2) and (2.3) or (3.12) and
(3.15). However, the rate equation which Frohlich postu-
lated (1.1) shows, in the case of vanishing pumping rate,
the thermal distribution of free Bose particles. Hence
this rate equation cannot be derived from the Wu-Austin
Hamiltonian.

One can ask why we obtain such different results from
Wu and Austin [9,10] and Hirsch [18], who derived the
rate equation from the Hamiltonian (1.2), using well
known procedures to do so. In our opinion the validity
of all these procedures depends on two crucial conditions:

(i) The applicability of perturbation theory to calculate
the density operator. There should at least be a region of
small y where perturbation theory works.

(i) The heat bath should be big enough not to be
influenced by the system. This is the usual assumption
for a heat bath. Of course, this assumption eneds a small
interaction between system and heat bath, too.

Let us discuss these two conditions for our model
Hamiltonian (2.1). First of all, we see that Bose conden-
sation appears even if the coupling constant y is very
small, as the typical parameter for this two-quanta pro-
cess H,,, (1.6) is NyY, which goes to infinity. The pertur-
bation theory which yields the expansion of the state (2.6)
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in terms of Y certainly does not converge for Noy — .
Indeed, we have

|B) ~exp zﬁkbz]| ), bl Y=0, (5.1
k
butBk is
_ MNyx
Bk-— ZQk ’

which goes to infinity. We see that perturbation theory
for the states and therefore for the density operator does
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not work either. On the other hand, the state for the heat
bath has changed dramatically, which violates condition
(ii).

We see two perspectives for the microscopic founda-
tion of Frohlich’s theory. First, the Wu-Austin Hamil-
tonian could possibly be adjusted in order to provide the
postulated rate equation. In its present form, this Hamil-
tonian cannot describe any realistic physical system (an
infinite energy gap is unphysical). Second, it could be
possible that there is no Hamiltonian at all that describes
Frohlich theory adequately. In any case we expect in-
teresting discussions on these questions.
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